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The variational formulation of nonlinear problems of the thermo-
dynamics of irreversible processes in the local potential method is
subjected to a comparative analysis, The particular example of the
solution obtained by the method of successive approximations is
examined and the possibility of using other methods is discussed.

The local potential method, proposed by Prigogine,
Glansdorff, and Hays [1], is one of the possible at-
tempts to apply the general criterion of evolution [2]
to the variational formulation of nonlinear problems
of the thermodynamics of irreversible processes. The
starting premises arethe existence of local equilibrium
in some region of the system and the satisfaction of
Onsager's symmetry relations for the phenomeno-
logical coefficients in the stationary state. In the
local potential method the phenomenological coefficients
are not assumed constant and hence, in principle, the
method is applicable to any nonequilibrium stationary
problem satisfying the above-mentioned starting prem-
ises,

The local potential is the rate of entropy production
in which the true phenomenological coelfficients Lyj,
relating the thermodynamic fluxes Jj and the thermal

forces Xj,
Ji= 2 LyX;, (1)
i

are replaced by their values L‘i’- in the stationary state.
Thus, the local potential

P={dv 3 ¥ LiXX; (@)
v T

in the stationary state itself coincides with the rate of
entropy production, while near the stationary state
the rate of variation of local potential with time satis-
fies* the general criterion of evolution

P=2{av LyX,X, 0. (3)
@ 33tk

From the definition of the local potential it is clear
that it is an extremal function of state only in the sta-
tionary state itself, while in the neighborhood of the
stationary state, not being a function of state, it can

* The criterion of evolution asserts the nonpositive~
ness of the form
(av 33 1yx:%;,
V- i i

which differs from (3) by quantities of the next order of
smallness,

only decrease with time. This property makes it pos-
sibl_e to formulate a variational principle analogous
to the theorem of minimum rate of entropy production:

§P=0, 82P>0 (4)

for the nonlinear region of the phenomenological re-
lations.

To formulate the variational principle it is usually
more convenient to characterize the state of the
system not with respect to the forces X;, but with re-
spect to certain functions of the forces ZS(Xi), which
completely determine the state and hence Xj. Thus, in
problems of heat conduction it ig more convenient to
find the distribution of the temperature itself and not
the gradient of its reciprocal. In this case the steady
state will correspond to functions 2% and hence

LY = Ly (Z3). (5)

With this in mind, we can formulate variational prob-
lem (4) in general form as the problem of finding m
unknown functions Zg(qk) (s =1,2,...,m), defined in
the closed fixed region V of the space of generalized
coordinates gk (k =1,2,..., ) satisfying the boundary
conditions

G, (4 Zg (Zg)=0 (p=1, 2, ...

and minimizing the functional

P(Z)—§22 Lyj (Z5; (Ze)g) X;(Z,;

=1 j==i

(ZJq) X; (Zys (Z,)q,)dq (dq = dqydg, ... dg)) M

, mjon I (8)

with the additional condition

Z2@) =2, (5=, 2, ..., m). (8)

A feature of variational problem (8), (7), (8) is the
dependence of the integrand function—the Lagrangian &
of the functional P— on the two sets of functions Zg
and Z%, the variation being carried out only with re-
spect to the Zg, whereas the Z{ are assumed known;
in fact, the functions ZO are not known, since they rep-
resent the unknown solutlon The significance of this
will be evidentfrom an examination of the Euler Equations.

The extremum condition is written as follows:

Oy [ 0% - 8L \' 1y 70
6P = L e s

: )] 5zs}dv=o. ©)

! 055
"};} ( 9(Zy)y,
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Since the functions Z9 are assumed known, 6Z§ =
and in view of the arbitrariness of 6Zg, we obtain the
Euler equations

I

oZ

0% ]
g — 1 =0, {10}
0L,  ed [ 8(Z), la,

We denote the product X;Xj by X . Then the Langran-
14 gr

gian Zwill have the form
n n o
2=V L,
i
and the Euler equations are represented by
n " !
IR AR el
i - 0z, e 05\ B(Z), )
1
s0X;; oL, 0X;;
= L., =224 ( oo 4
Ei ; [ ¥ ez, ,Z og,  8(Zy),

' a  axX;;
+ L, m—’)] =0, (12)
! an a(Zs)Qk

g)‘;k) Xff (_Zs’ (Zs):lk)’ (11)

where
ot ) [ @i 35T ]
o, = 2 L, o
+ 2 a<zsf;:);iflt);,, (Z’)‘""’""]

Taking condition (8) into account, we obtain

n m {
N\ - oLy Xy
Z _— 4
2‘ Zt kzp{( t)qqu { a(Zt),,p B(Zs),,k
i,j ,

L aZX i }
Y 0(Z)q,0(Z e,

oL,  0X, FX, ]
TITIY J i ST p
@ | 5 sz, T azaey,
). @
— L. *f} =0. (13)
72

The solution of this system of equations with boundary
conditions (6) gives the unknown functions Zg.

Here, asdistinctfrom ordinary variational problem,
there are two conditions: the functions Zg are assumed
known 6Z} =0 and, moreover, equal to Zg(Zg=2Y%).
To illustrate the significance of these two conditions
we will sucessively discard them,

We start by discarding the first condition. Equation
(9) will again be the condition of the extremum of the
functional, Using condition (8), wereduce Eq, (9) to the
form
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6P=§E[ 'E(a(‘%’ );JﬁZﬂv:

s=1 k=l %

=0. (14}

Hence by virtue of the arbitrariness of 6Z% we obtain
the usual Euler equations in the form

2 oL, Xy
- OZ i az
i
8 Ly Xy \]_
’E o (a(Z)' Xat by a(Z; )]'
=1 ] s/ 4
-0 (15)

Comparing (15) with (13), we obtain the identity con-
ditions for these equations,
-

D[ x ——2

o gy
These conditions can be satisfied for arbitrary Xj;
only when Ljj, i.e., in the linear region of the phe-
nomenological relations, Thus, discarding the con-
dition 6Z°s =0 leads to the theorem of minimum entropy
production.

We now discard the second condition Zg = Z§. Equa-
tions (10), (11), (12) remain valid, but Egs, (13) are
not satisfied. In this case the final equations will be
Egs. (12), which for some choice of Zg again become
ordinary Euler equations. Equations (12) serve for
determining the next approximation. Hence discarding
the condition Zg = ZY leads to.the method of successive
approximations.

As an illustration of these general ideas we will
consider the problem of nonlinear heat conduction in
a solid.

In this case the general criterion of evolution is
expressed through the known condition of thermo-
dynamic stability. In fact, multiplying both sides of
the equation of energy conservation

o 2 _divw ()

ot

( oLy
0(Zy),
(16)

by 8T-1/8t, we obtain

0T Qe

G _ .(GT)
or ot ™ \at

//\

0. (18)

since the specific heat is positive definite. Hence for
the right side there also follows

GT‘ divw =

-1 -1
= — div ( agt W) + W grad ar <0. (19)

Integrating over the volume and applying the Ostro-
gradskii-Gauss formula, we obtain the inequality
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art - 0 -
—\W do+ | W— grad T4V < 0. (20)
ot ot
; i

For stationary boundary conditions the first integral
is equal to zero. Thus,

X W % grad T4V < 0, 1)

vV

which is also the expression for general criterion of
evolution in the given case. The equality corresponds
to the stationary state.

We use Fourier's law with temperature~dependent
thermal conductivity A:

W = —A(T) grad T = A (T) T? grad (T™Y). (22)
Then

j M(T)T* grad T ait grad 7-dV =

_LS
)
1

In order to obtain an expression for the local potential,
we substitute for the phenomenological coefficient L its
value inthe stationary state L°, i,e., insteadof A (T)T?
we write A (To)Tg, where T is the stationary tempera-
ture distribution. Then, as in the general case (3),

— (grd T dV <0, (23)

opP

O (a1 gradTrp dv = 22 <o (24)

ot
v

Hence there follows the variational problem: to find the
temperature distribution satisfying certain boundary
conditions and minimizing the functional

P= j A(To) Th (grad T-1)2 dV (25)
v

with the additional condition T =T},

We write the Euler equation for this problem. Taking
into account the condition of fixed stationary distri-
bution,

8T, =0, (26)

we obtain the equation

4 ’”T" (@rad T — div ( ’”TTF’ gradT) -
=4 MO (graary —
—2 (ﬁzg—;}gl&) grad Ty grad T +
+8 ’”T" (grad T)> —2 ”Tﬂ" AT =0, 27

hence, using the condition Ty =T, we obtain the sta~
tionary equation of heat conduction

M T -4 A (grad T = 0, (28)
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which represents Eq. (13) for the case of heat con-
duction.

Finally, we discard the fixity condition (26). Then
the Lagrangian
P = MT) T (grad T-Y)? = A (T) T (grad T)?, (29)
and the Euler equation takes the form
(M T2—2)T% (grad T)2 —div(@aT? grad T) =
2 A
= {— — 2 | (grad T)*— —
o 5 - x
A A 2T
Py — — ] (grad T*— =0, 30
(-7 ) (ersd 7y— 22 (30)
whence follows the equation
(A Ar .
AT -+ hr(grad TP = a + 5 (grad T2 (31)

This equation goes over into the stationary equation of
heat conduction when the right side is equal to zero, i.e.,
when one of the following two conditions is satisfied: A/T +
+ Al /2 =0, whence MT) =¢T™?, or (grad T)?=9,
whence T =const. Obviously, these are precisely the
cases when L =const, i.e., when the stationary state
lies in the linear region of the phenomenological re-
lations.

In this case the general equation (12) is represented
by Eq. (27), which can be used to determine the next
approximation to the stationary temperature distribu-
tion in the method of successive approximations.

APPENDIX

We will compare the temperature distributions given
by the local potential method, the theorem of minimum
entropy production and the method of successive ap-
proximations for the problem of nonlinear heat con~
duction.

We will consider a heat~conducting segment of
length I, at whose ends the temperature values T, and
T, are given, Introducing the dimensionless variables
x =Xdim/? and T = Tgyp,/T; and assuming, to be spe-
cific, T, =2T;, we obtain the boundary conditions of
the problem in the form

T(0)=1, T(l)=2. (1%

We also assume alinear law of variation of the thermal
conductivity

MT) =ho(l +aT), (2%

where Ag and a are certain constants,
For this special case the stationary equation of heat
conduction (28) is written in the form

(1 4+ aT)Tox+ a(TH?=0. (3%

It is easy to verify that the solufions of this equation
are

T=—1/o+Vecx-+c when a0,
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T =cx+cy l‘when a=0, (4%

where the values of the constants are found from boundary
conditions (1%,

Solutions (4% give the actual stationary temperature
distributions for various values of obtained by the
local potential method,

For this case Eq. (31) is expressed as follows:

[T — (T2 +aT [TT,,,, — % (T;)Z] 0. (5%

For comparison with the exact solution (4% we will
consider the same limiting values @ =0 and & = =,
Obviously, at these values of the parameter « the
form of the solution will be as follows:

T = c;exp(c,x) when ¢ =0,

2
4

T = ¢x® + x4 4i when o = o, (6%
Cy

where the values of the constants are again easily
found from boundary conditions (1%, Solutions (6% are
the distributions corresponding to minimization of
entropy production, and not local potential, i.e., these
distributions are obtained as aresult of applying the
methods of ordinary thermodynamics of irreversible
quasi-equilibrium processes.

To(1 +aTy) [2 (T0)—TTu] — TT:Tox 2+ ¢ To) =
=0, (7
We start by selecting as the zero approximation T,

that for which L = const, i.e., Ty =const. Then for all
values of @ Eq. (7% gives a solution of the form

T=c(x+c)% (8%)

If as the zero approximation we take Ty =1+ x, which
corresponds to the stationary temperature distribution
at A(T) =const, the form of the solution will be dif-
ferent:

T =cy[(I4+ %)% 4 ]! wheng = oo,
T = ¢;x + ¢ when o =0. (9%
A comparison with the exact solution compels us to

give preference to the starting approximation A(T) =
=const.
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For comparison wewrite the stationary temperatyre
distributions obtained, using (19,
by the local potential method

T=1-+x whena=0,
T=V3x+1 when o= co,

by the method based on application of the theorem of
minimum entropy production

(10%

T =2* when a= 0,

T=0B—-2V2x+@2V2~2)x+1when g =0, {(11%

and by the method of successive approximations

2
T= 2 —x when L = const and for any a,

T=1+%whenT,=1+xanda=0,

T=3|1— ;J whenT, =1+ 1.
L (+xr+e2

while o = o».

NOTATION

J; is thethermodynamic flux; X; is thethermodynamic
force; Lij is the phenomenological coefficient; p is
the density; e is the energy per unit mass; W is the
heat flux; V is the volume of the system; Z is the
boundary surface; do is the element of the boundary
surface; A(T) is the temperature-dependent thermal
conductivity,
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